- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Rawashdeh, Nathir (2)
-
Chennupati, Sumanth (1)
-
Essa, Almabrok (1)
-
Paheding, Sidike (1)
-
Rawashdeh, Samir A (1)
-
Reyes, Abel A (1)
-
Saleem, Ashraf (1)
-
Siddiqui, Mohammad_Faridul Haque (1)
-
Thaker, Keval (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In recent years, deep learning has significantly reshaped numerous fields and applications, fundamentally altering how we tackle a variety of challenges. Areas such as natural language processing (NLP), computer vision, healthcare, network security, wide-area surveillance, and precision agriculture have leveraged the merits of the deep learning era. Particularly, deep learning has significantly improved the analysis of remote sensing images, with a continuous increase in the number of researchers and contributions to the field. The high impact of deep learning development is complemented by rapid advancements and the availability of data from a variety of sensors, including high-resolution RGB, thermal, LiDAR, and multi-/hyperspectral cameras, as well as emerging sensing platforms such as satellites and aerial vehicles that can be captured by multi-temporal, multi-sensor, and sensing devices with a wider view. This study aims to present an extensive survey that encapsulates widely used deep learning strategies for tackling image classification challenges in remote sensing. It encompasses an exploration of remote sensing imaging platforms, sensor varieties, practical applications, and prospective developments in the field.more » « less
-
Thaker, Keval; Chennupati, Sumanth; Rawashdeh, Nathir; Rawashdeh, Samir A (, Journal of Imaging)Despite significant strides in achieving vehicle autonomy, robust perception under low-light conditions still remains a persistent challenge. In this study, we investigate the potential of multispectral imaging, thereby leveraging deep learning models to enhance object detection performance in the context of nighttime driving. Features encoded from the red, green, and blue (RGB) visual spectrum and thermal infrared images are combined to implement a multispectral object detection model. This has proven to be more effective compared to using visual channels only, as thermal images provide complementary information when discriminating objects in low-illumination conditions. Additionally, there is a lack of studies on effectively fusing these two modalities for optimal object detection performance. In this work, we present a framework based on the Faster R-CNN architecture with a feature pyramid network. Moreover, we design various fusion approaches using concatenation and addition operators at varying stages of the network to analyze their impact on object detection performance. Our experimental results on the KAIST and FLIR datasets show that our framework outperforms the baseline experiments of the unimodal input source and the existing multispectral object detectorsmore » « less
An official website of the United States government
